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Abstract

The transverse relaxation rate, R2, measured as a function of the effective field (R2 dispersion) using a Carr-
Purcell-Meiboom-Gill (CPMG) pulse train, is well suited to detect conformational exchange in proteins.
The dispersion data are commonly fitted by a two-site (sites a and b) exchange model with four parameters:
the relative population, pa, the difference in chemical shifts of the two sites, dx, the correlation time for
exchange, sex, and the intrinsic relaxation rate (i.e., transverse relaxation rate in the absence of chemical
exchange), R0

2. Although the intrinsic relaxation rates of the two sites, R0a
2 and R0b

2 , can differ, they are
normally assumed to be the same (i.e., R0a

2 ¼ R0b
2 ¼ R0

2) when fitting dispersion data. The purpose of this
investigation is to determine the magnitudes of the errors in the optimized exchange parameters that are
introduced by the assumption that R0a

2 ¼ R0b
2 . In order to accomplish this goal, we first generated synthetic

constant-time CPMG R2 dispersion data assuming two-site exchange with R0a
2 6¼ R0b

2 , and then fitted the
synthetic data assuming two-site exchange with R0

2 ¼ R0a
2 ¼ R0b

2 . Although all the synthetic data generated
assuming R0a

2 6¼ R0b
2 were well fitted (assuming R0a

2 ¼ R0b
2 ), the optimized values of pa and sex differed from

their true values, whereas the optimized values of dx values did not. A theoretical analysis using the
Carver–Richards equation explains these results, and yields simple, general equations for estimating the
magnitudes of the errors in the optimized parameters, as a function of ( R0a

2 � R0b
2 ).

Introduction

Local conformational changes in proteins on the
ms- ls time scale often cause an increase the rate
of transverse spin relaxation, R2, via the chemical
exchange mechanism. Determination of chemical
exchange parameters, such as lifetimes, popula-
tions and chemical shifts of the exchanging spe-
cies is of interest in order to characterize the
kinetics and thermodynamics of a conforma-

tional transition that is relevant to function
(Palmer et al., 2001; Korzhnev et al., 2004b). The
exchange parameters are often derived from the
measurements of R2 dispersion, where R2 is
measured as a function of the effective field
strength ðmCPÞ in a CPMG experiment (Orekhov
et al., 1994; Ishima et al., 1998; Loria et al.,
1999; Mulder et al., 2001). In particular, an effi-
cient dispersion experiment, in which one refer-
ence 2D spectrum and a series of 2D spectra
with various delays between CPMG pulses, 2sCP,
applied for a constant relaxation period, is well
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suited for protein studies (Mulder et al., 2001;
Skrynnikov et al., 2001; Tollinger et al., 2001;
Ishima and Torchia, 2003).

The simplest and most widely used model of
the chemical exchange involves two sites, a and b.
In this case, R2 depends upon five parameters: (1)
the relative population of site a, pa; (2) the
exchange correlation time, sex; (3) the difference in
chemical shifts of the two sites, dx; and (4, 5) the
intrinsic relaxation rates without chemical ex-
change, R0a

2 and R0b
2 . Unless exchange is in the

slow limit and two resolved signals are detected, it
is usual to assume that R0a

2 ¼ R0b
2 ¼ R0

2. However,
in general R0a

2 is not equal to R0b
2 . In studies of

proteins, significant differences between R0a
2 and

R0b
2 would be expected when exchanging species

are (a) folded and unfolded states of a protein, (b)
a monomer in equilibrium with an oligomer, and
(c) a ligand free and bound to a large protein.

Early theoretical work showed that the
R0a

2 ¼ R0b
2 assumption had little impact upon the

analysis of exchange involving small molecules
because dR0

2 ¼ ðR0a
2 � R0b

2 Þ was very small (Wo-
essner, 1960; Vold and Chan, 1972). In contrast,
Davis et al. (1994) showed that dR0

2 of a small
molecule ligand, exchanging between free and
protein-bound states, was significant. In this case
proper fitting of the dispersion data required
independent determinations of R0a

2 and R0b
2 . Re-

cently, in a systematic study of the very slow
exchange (sex > 100 ms) between unfolded and
folded states of an SH3 domain, the effect of the
difference between R0a

2 and R0b
2 was estimated to

be negligible when pa>>pb (Tollinger et al., 2001;
Korzhnev et al., 2004a).

From the above remarks it is clear that using
the dR0

2 ¼ 0 assumption to fit dispersion data
can introduce either insignificant or substantial
errors in optimized exchange parameters,
depending upon circumstances. Therefore our
purpose is to obtain a general quantitative
understanding about errors in optimized ex-
change parameters that are introduced by
assuming that R0a

2 ¼ R0b
2 when fitting experi-

mental dispersion curves. We do this by first
generating synthetic dispersion data using the
relaxation matrix approach of Jen (1978) to
numerically calculate R2 as a function of mCP
during a CPMG pulse train. We next fit the
synthetic dispersion data calculated with
R0a

2 6¼ R0b
2 (i.e. using five parameters) by the

same numerical approach, but assuming that
R0a

2 ¼ R0b
2 (i.e. using four parameters). We then

compare the optimized parameters with their
true values, and explain the errors in the
parameters using the Carver–Richards equation
(Carver and Richards, 1972; Jen, 1978; Davis
et al., 1994). The Carver–Richards equation is
also used to develop simple general expressions
for the errors in the optimized parameters as a
function of dR0

2.

Methods

Generation of synthetic R2 dispersion data

Transverse magnetization, I(t), during a constant
time CPMG pulse train was generated by a
numerical solution of the Bloch–McConnell
equations (McConnell, 1958) using the matrix
method of Jen (1978). I(t) for a series of mCP
values was calculated using 5 parameters: (1) the
population of site a, pa; (2) the correlation time
for exchange, sex; (3) the difference in chemical
shifts between sites a and b, dx; (4, 5) the
intrinsic transverse relaxation rates of sites a and
b respectively, R0a

2 and R0b
2 . Off-resonance effects

were assumed to be negligible. For fast and
intermediate exchange, R2 was calculated as
� logðIðTcpÞ=Ið0ÞÞ=Tcp where I(0)=1 and Tcp is
the constant CPMG relaxation period, assumed
to be 200 ms. For slow exchange, R2 was cal-
culated according to � logðIaðTcpÞ=Iað0ÞÞ=Tcp

where Iað0Þ ¼ pa. MATLAB software (Math-
works Inc, MA) was used for the calculations.

R2 dispersion curve fitting

The synthetic R2 dispersion curves generated using
five parameters ðR0a

2 6¼ R0b
2 Þ were fitted using four

parameters ðR0a
2 ¼ R0b

2 ¼ R0
2Þ. The optimized ex-

change parameters, R0
2; dx; pa, and sex, were cal-

culated by minimizing the quality function, Q2,
where

Q2 ¼
X

i

Ri;syn
2 � Ri;fit

2

Ri;syn
2

 !2

ð1Þ

Here, Ri;syn
2 and Ri;fit

2 , are synthetic and fitted R2

values of i-th mCP value, respectively. Q is the value
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of the total rms fractional difference of Ri;fit
2 from

Ri;syn
2 , and is a measure of the quality of the four

parameter fit ðR0a
2 ¼ R0b

2 Þ to the synthetic data
generated with five parameters ðR0a

2 6¼ R0b
2 Þ. To

ensure that the global Q2 minimum was found, Q2

minimization was repeated using a range of initial
parameters, in both slow and fast exchange regimes.

The Monte Carlo method was used to estimate
the uncertainties of the four optimized parameters
due to random noise in the R2 data. One hundreds
‘‘noisy’’ synthetic R2 dispersion data sets were
generated by adding random Gaussian noise, with
rms amplitude DRi;err

2 ¼ 2%, to each R2 value. The
parameters optimized by minimizing Q2 (Equation
(1)) were used as initial parameters to fit each of
the 30 noisy data sets. For each data set, four
optimized exchange parameters were obtained by
minimizing the target function.

v2 ¼
X

i

Ri;syn
2 � Ri;fit

2

DRi;err
2

 !2

ð2Þ

The uncertainty of each exchange parameter was
calculated as the standard deviation of the 100
optimized values of the parameter obtained from
the Monte Carlo fits.

Theoretical analysis of errors in optimized
parameters

We used the Carver–Richards equation (Carver
and Richards, 1972) as corrected by (Jen, 1978;
Davis et al., 1994) in order to understand the
observed differences between optimized parameters
derived by minimizing Q (i.e. fits obtained
assuming R0a

2 ¼ R0b
2 ) and the parameters used to

generate the synthetic R2 values (calculated
assuming R0a

2 6¼ R0b
2 ). The Carver–Richards equa-

tion can be written as follows:

R2 ¼ ðR0a
2 þ R0b

2 þ 1=sexÞ=2� ð1=2sCPÞ ln kþ

ð3:1Þ

ln kþ ¼ ln½ðDþ cos h2n�D� cos
2 gÞ1=2

þ ðDþsinh2nþD�sin
2gÞ1=2�

ð3:2Þ

D� ¼ 1=2 �1þ ðwþ 2ðdxÞ2Þ=ðw2 þ f2Þ1=2
h i

ð3:3Þ

n ¼ ðsCP=2
p
8Þ þwþ ðw2 þ f2Þ1=2
h i1=2

ð3:4Þ

g ¼ ðsCP=2
p
8Þ �wþ ðw2 þ f2Þ1=2
h i1=2

ð3:5Þ

w ¼ ðdR0
2 � dp=sexÞ2 � ðdxÞ2 þ 4ðpapb=s2exÞ

ð3:6Þ

f ¼ 2ðdxÞðdR0
2 � dp=sexÞ ð3:7Þ

Here, scpð¼ 1=4mCP) is the half duration between
CPMG 180� pulses, and dX ¼ Xa � Xb.

Examination of Equation (3) reveals that R2

calculated using five parameters ðpa; dx; sex;
R0a

2 ;R
0b
2 Þ equals R2 calculated using four parame-

ters ðp�a; dx�; s�ex;R0�
2 Þ when the following condi-

tions are satisfied.

2R0�
2 þ 1=s�ex ¼ R0a

2 þ R0b
2 þ 1=sex ð4Þ

dp�=s�ex ¼ dR0
2 � dp=sex ð5Þ

p�bp
�
a=ðs�exÞ

2 ¼ pbpa=ðsexÞ2 ð6Þ

dx� ¼ dx ð7Þ

In order to establish the range of validity of Equa-
tions (4–7), we first note that when dR0

2sex\\1,
Jen’s equation for R2 in the fast pulsing (strong
effective field) limit R2ðmCP !1Þ (Jen, 1978; Davis
et al., 1994) can be simplified by retaining terms less
than second order in dR0

2sex and written as

R2ðmCP !1Þ ¼ R0�
2 � paR

0a
2 þ pbR

0b
2

� papbsexðdR0
2Þ

2
ð8Þ

Replacing R0�
2 in Equation (4) by the right-hand

side of Equation (8), and then adding and sub-
tracting Equations (4) and (5) and retaining terms
that are less than second order in dR0

2sex, one
obtains the following relationships between the
exchange parameters

s�ex ¼ sexð1� dpdR0
2sexÞ

�1 ð9Þ

p�a ¼ pað1� dR0
2sexÞ=ð1� dpdR0

2sexÞ ð10:1Þ
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p�b ¼ pbð1þ dR0
2sexÞ=ð1� dpdR0

2sexÞ ð10:2Þ

Replacing s�ex and p�a in Equation (6) by right-
hand sides of Equations (9) and (10) shows that
Equation (6) is valid when (dR0

2sexÞ
2\\1. There-

fore, this analysis, based upon the Carver–Rich-
ards equation, predicts that, when jdR0

2j > 0,
excellent fits of R2 dispersion data will be
obtained assuming that R0a

2 ¼ R0b
2 , provided that

ðdR0
2sexÞ

2\\1. In addition, when this inequality is
satisfied and the Carver–Richards equation is
accurate, Equations (4), (9), and (10) provide
simple, yet quantitative, predictions of the frac-
tional errors in optimized values of dx; sex; pa and
pb derived from four parameter fits.

For completeness, we note that in the fast
exchange limit, 1=sex >> dx; dR0

2, the Carver–
Richards equation (Equation (3)) becomes (Palmer
et al., 2001)

R2 ¼ paR
0a
2 þ pbR

0b
2 þ ðpapbðdxÞ2sexÞ

� ½1� ðsex=sCPÞtanhðsCP=sexÞ�
ð11Þ

It is clear from Equation (11) that in the fast ex-
change limit, only three parameters, R0

2 ¼ paR
0a
2 þ

pbR
0b
2 ;U ¼ papbðdxÞ2, and sex can be derived from

fitted dispersion data. In addition, because R2

depends on only the population-weighted average
of R0a

2 and R0b
2 , parameter optimization is inde-

pendent of dR0
2.

In the subsequent presentation we employ the
three sets of parameters that are distinguishedby the
following superscripts: (a) the superscript ‘‘syn’’
identifies the five parameters ðpsyna ; dxsim; ssynex ;
R0a;syn

2 ;R0b;syn
2 Þ that are used to generate the syn-

thetic R2 dispersion data; (b) the superscript ‘‘fit’’ is
applied to the four optimized parameters
ðpfita ; dxfit; sfitex;R

0;fit
2 Þ that are derived by fitting the

synthetic data according to Equation (1); (c) the
superscript ‘‘*’’ identifies the four parameters
ðp�a; dx�; s�ex;R

0;�
2 Þ that are obtained fromEquations

(7) to (10).

Results and discussion

Generation of relaxation dispersion data
in intermediate exchange

We generated nine transverse relaxation dispersion
data sets using the parameters listed in Table 1.
For all nine data sets, dxsynssynex ¼ 1:57, implying
that exchange is on the intermediate time scale.

Table 1. Optimized parameters obtained assuming the R0a
2 ¼ R0b

2 ¼ R0
2 model to fit intermediate exchange data*

Original parameters Optimized values and percentage differences of the values from the original parameters used

for the data generation

pfitb Dp��b
(%)

dxfit=2p

(Hz)

sfitex
(ms)

Ds��ex
(%)

R0;fit
2

(s)1)

Q***

psynb ¼ 0:3����

dR0;syn
2 ¼ 0 s)1 0.300 0.0 50.0 5.00 0.0 20.0 6.69�10)6

dR0;syn
2 ¼ 10 s)1 0.321 7.0 50.0 5.09 1.8 16.9 5.09�10)4

dR0;syn
2 ¼ 15 s)1 0.332 11.0 50.0 5.14 2.8 15.3 8.28�10)4

psynb ¼ 0:2

dR0;syn
2 ¼ 0 s)1 0.200 0.0 50.0 5.00 0.0 20.0 7.65�10)6

dR0;syn
2 ¼ 10 s)1 0.218 8.0 50.0 5.15 3.0 17.9 3.49�10)4

dR0;syn
2 ¼ 15 s)1 0.225 11.2 50.0 5.22 4.4 16.8 5.69�10)4

psynb ¼ 0:1

dR0;syn
2 ¼ 0 s)1 0.100 0.0 50.0 5.00 0.0 20.0 7.28�10)6

dR0;syn
2 ¼ 10 s)1 0.109 9.0 50.0 5.20 4.0 19.0 1.99�10)4

dR0;syn
2 ¼ 15 s)1 0.114 14.0 50.0 5.31 6.2 18.4 3.24�10)4

*Parameter optimizations were performed for R2 dispersion data generated with the parameters dxsyn ¼ 50 Hz, ssynex ¼ 5 ms, and
Ra;syn

2 ¼ 20 s)1 and the psynb and dR0;syn
2 ð¼ R0a

2 � R0a
2 ) values listed in the left most column in the Table.

**The percentage differences of the fit parameters from the parameters used to generate the data for pb and sex are Dpb and Dsex,
respectively. The percentage difference was not listed for dx because it was less than 0.1% in every case.
***Q2 given by Equation (1) was used as the target function of minimization.
****psynb ¼ 1� psyna . The minor population, psynb , is listed because the percentage difference from the true value is larger for psynb than psyna .
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Three of the synthetic data sets generated with
R0b;syn

2 ¼ 20; 10, and 5 s)1 ( dR0;syn
2 ¼ 0; 10; 15 s)1,

respectively) are shown in Figure 1. Figure 1
reveals that in the strong field limit, mCP !1, the
plateau value of R2, R0

2, decreases as R0b;syn
2

decreases (i.e., as dR0;syn
2 increases) because R0

2 is a
population-weighted average of R0a

2 and R0b
2 , as

described in Equation (8). On the other hand, in
the weak field limit, mCP ! 0;R2 is independent of
R0b;syn

2 . This latter observation is predicted by the
Carver–Richards equation in the weak field limit
(Jen, 1978). In this limit, Ra

2 is equal to the real
part of the lowest eigenvalue of the Bloch–
McConnell relaxation matrix (Davis et al., 1994;
Cavanagh et al., 1996). When dx2 >> ð1=sexÞ2;
ðdR0

2Þ
2, a straightforward calculation yields

Ra
2ðmCP ! 0Þ � R0a

2 þ pb=sex þ papb

� ðdR0
2 � dp=sexÞ=ðdx2s2exÞÞ

ð12Þ

The expression for Rb
2ðmCP ! 0Þ is obtained by

interchanging subscripts ‘a’ and ‘b’ in Equation
(12). Inserting the values of the exchange param-
eters used to generate the curves in Figure 1 into
Equation (12), Ra

2ðmCP ! 0Þ changes by less than
2% as R0b;syn

2 decreases from 20 to 5 s)1. This
predicted result is in agreement with the synthetic
data plotted in Figure 1.

Parameter optimization using the R0a
2 ¼ R0b

2

model in intermediate exchange

Using the R0a
2 ¼ R0b

2 model, the four parameters
ðpfita ; dxfit; sfitex;R

0;fit
2 Þ were optimized by fitting the

synthetic dispersion data in Table 1 that were
generated using 5 parameters ðpsyna ; dxsyn; ssynex ;
R0a;syn

2 ;R0b;syn
2 Þ. The parameter optimizations were

performed by minimizing Q2 defined in Equation
(1). Q is the square-root of the sum of the frac-
tional differences between R0;syn

2 and R0;fit
2 . Data

generated using R0a
2 ¼ R0b

2 were fitted to test that
the optimization yielded optimized parameters
that equaled those used to generate the synthetic
data. The optimized parameters and the Q values
for all intermediate exchange date fitted are listed
in Table 1.

All Q values listed in Table 1 are less than
6�10)4, which implies that the average value
of ðR0;syn

2 � R0;fit
2 Þ=R

0;syn
2 is less than 1.8�10)5

(=0.0018%). Because this number is much less
than the R2 error in dispersion experiments
(typically >1%), a four-parameter fit with R0a

2 ¼
R0b

2 ¼ R0
2 will, in practice, fit a dispersion data set

as well as a five-parameter fit. Note that in
Table 1, the Q values for synthetic data generated
assuming that R0a

2 ¼ R0b
2 (i.e., four parameters

were used to generate the synthetic data) are at
least 30 times smaller than Q values for synthetic
data generated using five parameters, i.e.,
R0a

2 6¼ R0b
2 . In addition, the optimized parameters

are in essentially perfect agreement with the
parameters used to generate the synthetic data.
These results confirm that the optimization was
correctly performed.

Table 1 shows that the optimized pfitb and sfitex
values increasingly differ from the parameters used
to generate the synthetic data as the dR0;syn

2 in-
creases, a result that is clearly depicted in Figure 2.
In addition, it is evident that when the sign of
dR0;syn

2 reverses, so do the signs of the deviations
of optimized parameters from their true values
because, as is predicted by Equations 8–10, the
sign of the deviations depends on the sign of dR0

2.
In contrast, the optimized value of dxfit is inde-
pendent of dR0;syn

2 (Table 1). In spite of the fact
that nearly perfect fits of relaxation dispersion
data are obtained using the four-parameter model,
the optimized parameters pfitb and sfitex deviate from
their correct values by 14% and 6%, respectively,
when dR0;syn

2 ¼ 15 s)1.

sy
n

-1
R

(s
  )

2

10
1

10
2

10
3

10
4

20

24

28

32

36

νCP (Hz)

Figure 1. Synthetic R2 dispersion data, calculated for the case
of intermediate exchange ðssynex dxsyn ¼ 1:57Þ, plotted as a func-
tion of the effective field strength, mCP. A matrix solution of the
two-site Bloch–McConnell equations (Jen, 1978) was used to
calculate R2 using MATLAB together with the following
parmeters: psyna ¼ 0:9; ssynex ¼ 5 ms, dxsyn=2p ¼ 50 Hz, R0a;syn

2 ¼
20 s)1, and R0b;syn

2 ¼ 20ð�Þ, 10 (+), and 5 (�) s)1.
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In order to compare the magnitude of these
errors in optimized parameters with parameter
uncertainties introduced by experimental error, the
parameter optimization was performed incorpo-
rating a random uncertainty of 2% (rms) in all the
synthetic R2 data. The optimized parameters were
obtained by minimizing the v2 target function
(Equation (2)) and the parameter uncertainties
were derived from the Monte-Carlo approach
described in Methods. The parameter uncertainties
and the average values of the normalized v2

functions, v2=N, are listed in Table 2. The values
of v2=N, listed in Table 2, are close to unity,
indicating that the optimizations are consistent
with the rms noise and small Q values listed in the
Table 1. The uncertainties of the optimized
parameters due to the 2% rms random uncertainty
in R2, are in the ranges of 2–20% and 6–40% for
pfitb and sfitex, respectively, and increase as psynb

decreases (Table 2). This latter result is explained
by the reduction of the amplitude of the exchange
contribution to R2 as p

syn
b decreases, which causes

Table 2. Percentage uncertainities of the optimized exchange parameters listed in Table 1 due to a rms 2% uncertainty in the synthetic

R2 data

Initial parameters Optimized parameter uncertainties and normalized v2 values

pfitb
(%)

dxfit=2p

(%)

sfitex
(%)

R0;fit
2

(%)

v2=N�

psynb ¼ 0:3

dR0;syn
2 ¼ 0 s)1 2.6 2.2 7.2 0.47 0.98

dR0;syn
2 ¼ 10 s)1 2.5 1.8 6.8 0.44 1.03

dR0;syn
2 ¼ 15 s)1 2.4 1.8 6.3 0.57 0.96

psynb ¼ 0:2

dR0;syn
2 ¼ 0 s )1 3.5 3.2 11.1 0.43 1.01

dR0;syn
2 ¼ 10 s)1 3.7 3.2 11.0 0.42 1.05

dR0;syn
2 ¼ 15 s)1 3.2 3.1 10.5 0.45 1.00

psynb ¼ 0:1

dR0;syn
2 ¼ 0 s)1 19.0 10.4 35.4 0.46 0.98

dR0;syn
2 ¼ 10 s)1 17.4 8.0 38.4 0.43 1.03

dR0;syn
2 ¼ 15 s)1 15.7 7.6 37.8 0.46 0.96

*Uniform 2% rms uncertainities were assumed for the relaxation dispersion data. Uncertainities of the optimized values were estimated
as the standard deviations of the parameter distributions derived from the Monte-Carlo calculations. The target function used for the
minimization in each trial is given by v2 in Equation (2).
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1

Figure 2. Plots of optimized exchange parameters (a) pfitb , (b) sfitex, and (c) R0;fit
2 obtained by fitting intermediate-exchange R2 data,

generated assuming five parameters, with a four-parameter model. The synthetic data were generated using the following parameters:
psynb ¼ 0:1; 0:2, and 0.3, ssynex ¼ 5 ms, dxsyn=2p ¼ 50 Hz, R0a;syn

2 ¼ 20 s)1, dR0
2 ¼ 0, 10, and 15 s)1. The optimized values at psynb ¼ 0:1,

0.2, and 0.3 are plotted using h (cyan), D (red), and s (purple), respectively. The parameter values predicted by Equations (10), (9),
and (8) for pfitb ; s

fit
ex, and R0;fit

2 , respectively, are plotted as three colored lines, corresponding to psynb ¼ 0:1 (cyan), 0.2 (red), and 0.3
(purple).
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an increase the fractional uncertainty in the
exchange contribution to R2.

Comparison of Table 1 with Table 2 clearly
indicates that the error in pfitb introduced by four-
parameter fitting is larger than the uncertainty in pfitb
which arises from the 2% rms uncertainties in theR2

values when pfitb > 0:1. In contrast, the error in sfitex
introduced by the four-parameter fit is smaller than
the uncertainty caused by the 2% rms uncertainty in
R2. We note that the experimental uncertainties in
R2 of less than 2% have been reported for dispersion
profiles recorded using a low temperature probe
(Ishima and Torchia, 2005). In such cases the errors
in exchange parameters caused by the R0a

2 ¼ R0b
2

assumption will be more significant than indicated
by the results in Tables 1 and 2.

Comparison of parameters predicted by theory
with those derived from four-parameter fits
of synthetic R2 data

The fitted optimized parameters (pfita ; s
fit
ex, and R0;fit

2 )
are plotted as functions of dR0

2 in Figure 2 along
with curves depicting the theoretical functional
dependence of the fitted parameters on dR0

2, pre-
dicted by Equations 8–10. The plots show that
there is excellent agreement between the predicted
and fitted values of the optimized parameters. For
all simulated data in Table 1, dR2sex\0:075. In the

limit that dR2sex\\1, Equations (9) and (10.2)
predict that differences between the true and fitted
values of sex and pb are proportional to dR2, as
observed in Figure 2. Furthermore, the linear
decrease of R0;fit

2 as dR2 increases, Figure 2(c), is
predicted by Equation (8). Finally, the equality of
dxsyn with dxfit for all values of dR2 is in accord
with Equation (7). Therefore in the intermediate
exchange regime where the condition dR2sex\\1
is expected to be satisfied, Equations (7)–(10)
predict reliable values of the errors in optimized
parameters caused by the R0a

2 ¼ R0b
2 assumption.

Of course, approximate values of sex; pb; dx, and
dR2 must be available in order to use the theo-
retical equations to predict such errors. Approxi-
mate values of these parameters will usually be
available based upon estimated (by calculation or
experiment) rotational correlation times of the
molecules under study and of values of optimized
parameters obtained from preliminary four-
parameter fits.

Parameter optimization using the R0a
2 ¼ R0b

2

model in slow exchange

Using the R0a
2 ¼ R0b

2 model, the four parameters
ðpfita ; dxfit; sfitex;R

0;fit
2 Þwere optimized by fitting to the

synthetic dispersion data generated using 5 param-
eters ðpsyna ; dxsyn; ssynex ;R

0a;syn
2 ;R0b;syn

2 Þ in the limit of
slow exchange, dxsynssynex ¼ 12:6 (Figure 3 and
Table 3). Here, dxsyn=2p (200 Hz) and ssynex (10 ms)
are respectively four times and two times larger than
those used in the case of intermediate exchange to
satisfy the slow exchange condition. The parameter
optimizations were performed by minimizing Q2

defined in Equation (1). The Q values listed in Ta-
ble 3 for fits to the data generated assuming that
R0a

2 ¼ R0b
2 are the same order as those in Table 1,

demonstrating that the optimization was properly
performed. ThemaximumQ values listed inTable 3
for the fits of the R0a

2 6¼ R0b
2 data were ca. 6�10)3,

about 10 times larger than those listed in Table 1 for
the intermediate exchange case. Nevertheless, the
small Q values listed in Table 3 imply that the
average value of ðR0;syn

2 � R0;fit
2 Þ=R

0;syn
2 is less than

1.8�10)4(=0.018%) for the slow exchange data.
These fractional differences between synthetic and
fitted R2 values are far less than the fractional
random uncertainties reported for measured R2

values (Korzhnev et al., 2004a; Yao et al., 2004;
Ishima and Torchia, 2005); therefore, in practice, a
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Figure 3. Synthetic R2 dispersion data, calculated in the limit
of slow exchange, plotted as a function of the effective field
strength,mCP. A matrix solution of the two-site Bloch–McCon-
nell equations (Jen, 1978) was used to calculate R2 using
MATLAB together with the following parameters:
psyna ¼ 0:9; ssynex ¼ 10 ms, dxsyn=2p ¼ 200 Hz, R0a;syn

2 ¼ 20 s)1,
and R0b;syn

2 ¼ 20ð�Þ, 10 (+), and 5 (�) s)1.
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four-parameter fit assuming that R0a
2 ¼ R0b

2 ¼ R0
2

would fit the slow exchange dispersion data as well
as a five-parameter fit.

Parameter optimizations were also performed
after introducing an rms uncertainty of 2% in all
the synthetic R2 data in order to compare the
errors resulting from four-parameter fits with
uncertainties introduced by random noise. The
values of v2=N, listed in Table 4, for the Monte
Carlo optimizations calculated for each synthetic
data set are close to unity, indicating that the
optimizations are consistent with the rms noise
and small Q values listed in the Table 3.

As expected, Table 3 reveals that the optimized
parameters pfitb and sfitex, derived from the four-
parameter fits to the synthetic data, increasingly
differ from their true values as dR0

2 increases.
These fitted parameters and R0;fit

2 are plotted as
functions of dR0

2 in Figure 4. The curves in the
figure depict the theoretical functional dependence
of the fitted parameters on dR0;syn

2 , predicted by
Equations 8–10. The plots show that there is
excellent agreement between the predicted and
fitted values of pb and R0

2. The theory also cor-
rectly predicts the observed linear increase in sfitex as
dR0;syn

2 increases as well as the increase in the error
in sfitex as dpsyn decreases. However, the predicted
errors are about twice those that are found
numerically. In this one respect the theory per-
forms less well in the case of slow exchange than it

does for intermediate exchange (compare Fig-
ure 2(b) with 4(b)). This result is not unexpected
because the accuracy of the Carver–Richards
equation diminishes in the case of slow exchange
(Tollinger et al., 2001). Finally, we note that errors
introduced by the assumption that R0a

2 ¼ R0b
2 are

far less than the uncertainties in pfitb and sfitex due to
the 2% rms uncertainty in the synthetic R2 data
(Table 4). However, as we discuss below, by
recording and fitting dispersion data for multiple
sites and nuclei at several external fields, it is
possible to greatly reduce experimental uncertain-
ties in pfitb and sfitex obtained when fitting a single
dispersion curve.

An assessment of impact the R0a
2 ¼ R0b

2 assumption
on the accuracy of optimized exchange parameters

To estimate the parameter errors introduced by
the R0a

2 ¼ R0b
2 assumption, we generated relaxation

dispersion data assuming R0a
2 6¼ R0b

2 and then
optimized the exchange parameters using the
R0a

2 ¼ R0b
2 model. Interestingly, we got the excel-

lent fit of the synthetic dispersion data using the
R0a

2 ¼ R0b
2 model with a residual in R2 less than

0.017%. This result also indicates that even when
R0a

2 and R0b
2 are assumed as independent parame-

ters to be optimized, the optimized values of R0a
2

and R0b
2 will have large uncertainties. Only when

two independent peaks at a and b sites are

Table 3. Optimized parameters obtained assuming the R0a
2 ¼ R0b

2 ¼ R0
2 model to fit intermediate exchange data*

Initial parameters Optimized values and percentage uncertainities

pfitb
value

Dpfitb
(%)

dxfit=2p

(Hz)

sfitex
(ms)

Dsfitex
(%)

R0;fit
2

(s)1)

Q

psynb ¼ 0:3

dR0;syn
2 ¼ 0 s)1 0.300 0.0 200 10.0 0.0 20.0 6.55�10)6

dR0;syn
2 ¼ 10 s)1 0.337 12.3 200 10.2 2.0 16.9 3.27�10)3

dR0;syn
2 ¼ 15 s)1 0.356 18.6 199 10.3 3.0 15.3 5.66�10)3

psynb ¼ 0:2

dR0;syn
2 ¼ 0 s)1 0.200 0.0 200 10.0 0.0 20.0 5.98�10)6

dR0;syn
2 ¼ 10 s)1 0.230 15.0 200 10.4 4.0 17.9 1.79�10)3

dR0;syn
2 ¼ 15 s)1 0.247 23.5 199 10.7 7.0 16.8 3.07�10)3

psynb ¼ 0:1

dR0;syn
2 ¼ 0 s)1 0.100 0.0 200 10.0 0.0 20.0 5.31�10)6

dR0;syn
2 ¼ 10 s)1 0.116 16.0 200 10.5 5.0 18.9 7.82�10)4

dR0;syn
2 ¼ 15 s)1 0.126 12.6 200 10.8 8.0 18.4 1.31�10)3

*Parameter optimizations were performed for R2 dispersion data generated with the parameters ssynex ¼ 10 ms,dxsyn=2p ¼ 200 Hz, and
Ra0;syn

2 ¼ 20 s)1 and the psynb and dR0;syn
2 values listed in the left most column in the Table. Parameters were optimized by minimizing Q2

defined in Equation (1). Other symbols are defined in the footnotes in Table 1.
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observed in slow exchange limit, R0a
2 and R0b

2 val-
ues may be determined using cross-correlated
relaxation rate, gxy (Wang et al., 2001). The use of
gXY is limited to the slow exchange limit because
when R0a

2 6¼ R0b
2 ;gxy is described as a cross-corre-

lation rate with a weighted average of the rota-
tional correlation times but not as a weighted
average of gXY values at site a and b. Therefore, in
most cases except for the very slow exchange, it
will be impossible to determine the true R0a

2 and
R0b

2 values from the dispersion data. When there is
a possibility of R0a

2 6¼ R0b
2 in the studying system,

the R0
2 value is a weighted averages of R0a

2 and R0b
2

and therefore it is not straight forward to use R0
2

extract information about internuclear distances
and correlation times.

The R0a
2 ¼ R0b

2 assumption did not introduce
errors in dxfit, but did introduce errors in pfitb and
sfitex. In intermediate exchange, errors in pfitb , at
psynb ¼ 0:3 and 0.2, (Table 1) were smaller than the
uncertainties caused by the 2% rms random errors
in R2 (Table 2), whereas, errors in pfitb at psynb ¼ 0:1
(Table 1) were larger than the uncertainties caused
by the random errors. Errors in sfitex in intermediate
exchange (Table 1) and errors in pfitb and sfitex in
slow exchange (Table 3) were all less than the

Table 4. Percentage uncertainties of the optimized exchange parameters listed in Table 1 due to a rms 2% uncertainty in the synthetic

R2 data

Initial parameters Optimized values and percentage uncertainities

pfitb ð%Þ dxfit=2pð%Þ sfitexð%Þ R0;fit
2 ð%Þ v2=N�

psynb ¼ 0:3

dR0;syn
2 ¼ 0 s)1 26.9 5.6 28.0 0.58 0.99

dR0;syn
2 ¼ 10 s)1 18.7 4.1 19.0 0.58 1.01

dR0;syn
2 ¼ 15 s)1 14.6 3.6 15.0 0.49 1.03

psynb ¼ 0:2

dR0;syn
2 ¼ 0 s)1 42.3 5.4 43.0 0.59 0.99

dR0;syn
2 ¼ 10 s)1 37.1 5.7 38.1 0.61 1.03

dR0;syn
2 ¼ 15 s)1 25.9 4.3 26.1 0.59 1.01

psynb ¼ 0:1

dR0;syn
2 ¼ 0 s)1 91.0 8.3 100 0.56 1.01

dR0;syn
2 ¼ 10 s)1 71.0 6.4 75.6 0.55 1.02

dR0;syn
2 ¼ 15 s)1 75.1 7.3 77.6 0.55 0.98

*Uniform 2% rms uncertainties were assumed for the relaxation dispersion data. Uncertainities of the optimized values were estimated
as the standard deviations of the parameter distributions derived from the Monte-Carlo calculations. The target function used for the
minimization in each trial is given by v2 in Equation (2).
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Figure 4. Plots of optimized exchange parameters (a) pfitb , (b) sfitex, and (c) R0;fit
2 obtained by fitting slow-exchange R2 data, generated

assuming five parameters, with a four-parameter model. The synthetic data were generated using the following parameters: psynb ¼ 0:1,
0.2, and 0.3, ssynex ¼ 10 ms, dxsyn=2p ¼ 200 Hz, R0a;syn

2 ¼ 20 s)1, dR0;syn
2 ¼ 0, 10, 15 s)1. The optimized values at psynb ¼ 0:1, 0.2, and 0.3

are plotted using h (cyan), D (red), and s (purple), respectively. The parameter values predicted by Equations (10), (9), and (8) for
pfitb ; s

fit
ex, and R0;fit

2 , respectively, are plotted as three colored lines, corresponding to psynb ¼ 0:1 (cyan), 0.2 (red), and 0.3 (purple).
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uncertainties caused by the 2% rms random error
in R2 (Tables 2 and 4). In addition, the random
errors in R2 cause the uncertainties of the fitting
parameters to increase, as the ratio R2ðmCP ¼ 0Þ=
R2ðmCP !1Þ decreases (i.e. as the fractional error
in Rex increases). Although these results indicate
that the random error in the parameters is small,
the accuracy of the optimized parameters can be
increased by group fitting dispersion curves of
multiple residues whose chemical shifts are mod-
ulated by a common conformational fluctuation
(Beach et al., 2005; Ishima and Torchia, 2005).
The accuracy of the optimized parameters can be
further improved by fitting the R2 dispersions of
several types of spins at several temperatures and
static magnetic fields (Grey et al., 2003; Choy
et al., 2004). Therefore, when the group-fitting
approach reduces parameter uncertainties to less
than ca. 5%, the errors caused by the R0a

2 ¼ R0b
2

assumption should be estimated using Equations
(7)–(10) and/or by obtaining estimates of param-
eter uncertainties using five parameter fitting.

The parameter errors introduced by the
R0a

2 ¼ R0b
2 assumption propagate to the values of

important thermodynamic quantities derived from
the optimized parameters. Examples are the free-
energy difference between a and b sites, DG ¼ �
lnðpb=paÞ, and the dissociation constant, KD ¼
ðpb=paÞ½L�, where [L] is the ligand concentration.
Equation (10) predicts that the fractional error of
ðp�b=p�aÞ introduced by the R0a

2 ¼ R0b
2 assumption is

2dR0
2sex which is twice larger than the fractional

error of sex.
The errors in the optimized parameters caused

by the R0a
2 ¼ R0b

2 assumption are accurately pre-
dicted by Equations (7)–(10) in the intermediate
exchange regime where the Carver–Richard equa-
tion is highly accurate. In intermediate exchange,
the theoretical equations correctly predict (Fig-
ure 2) that the fractional parameter errors increase
as dR0;syn

2 increases and as dpsyn increases. In slow
exchange, the parameter errors are smaller than
those predicted by the theoretical equations,
because the Carver–Richard equation no longer
predicts R2 dispersion profiles with high accuracy
(Tollinger et al., 2001) (Figure 4). In order to
clarify how the optimized sfitex values compare with
theoretical predictions, the optimized sfitex values are
plotted against psynb in Figure 5 in for psynb in the
range from 0.02 to 0.3. In the intermediate
exchange case (Figure 5a) sfitex linearly increases as

psynb decreases, in excellent agreement with the
prediction of Equation (9). In contrast, in slow
exchange (Figure 5b), Equation (9) overestimates
sfitex (and the error in sfitex) at all values of psynb , in
particular as psynb approaches zero. The latter
observation is similar to previous reports (Millet
et al., 2000; Korzhnev et al., 2004a) that, in slow
exchange with pa >> pb , the errors inR2 caused by
the R0a

2 ¼ R0b
2 assumption are small. However, our

simulations show that sfitex is not equal to ssynex even
when psynb approaches zero, indicating that in this
limit the fit parameters are not free from errors. To
understand this observation, we equated the slow-
exchange R2ðmcp ! 0Þ and R2ðmcp !1Þ equations
in four parameters to the corresponding equations
in five parameters (Equations (13) and (14),
respectively), and thereby derived Equation (15).

R0�
2 þ p�b=s

�
ex ¼ Ra

2 þ pb=sex ðmcp ! 0Þ ð13Þ

R0�
2 ¼ paR

a
2 þ pbR

b
2 ðmcp !1Þ ð14Þ

p�b=s
�
ex ¼ ð1þ dR0

2sexÞpb=sex ð15Þ

We confirmed that the fit parameters in Fig-
ure 5b satisfied Equation (15). Nevertheless, in
fitting experimental data, these errors will be
undetectable because, as pb approaches zero, Rex

becomes negligible for all values of mCP.
In spite of the fact that the R0a

2 ¼ R0b
2

assumption is often used in the analysis of the
relaxation dispersion data, there are many prac-
tical cases in which R0a

2 6¼ R0b
2 . Significant dif-

0.0 0.1 0.2 0.3 0.4
5.0

5.2

5.4

(a) (b)

pb
synpb

syn
0.0 0.1 0.2 0.3 0.4

10.0

10.4

10.8

11.2

11.6

τ e
xfit

 (m
s)

τ e
xfit

 (m
s)

Figure. 5 Plots of sfitex values (s) against psynb obtained using the
R0a

2 ¼ R0b
2 model to fit (a) intermediate and (b) slow exchange

R2 dispersion data. The parameters used in (a) and (b) are those
listed in Tables 1 and 3, respectively, with dR0;syn

2 ¼ 15 s)1. The
values of sfitex are compared with values predicted by Equation
(9) and shown as solid lines.
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ferences between R0a
2 and R0b

2 would be expected
when exchanging species are (1) unfolded and
folded states of a protein (2) a protein monomer
and oligomer (3) a ligand, free and bound to a
large protein. When such obvious differences
between R0a

2 and R0b
2 are expected, errors in the

parameters caused by the R0a
2 ¼ R0b

2 assumption
can be estimated using expected or simulated R0a

2

and R0b
2 values, as we discussed above. However,

when the nature of the b-conformation is
unknown, it will not be possible to estimate R0b

2 ,
and this will introduce uncertainties into the er-
rors calculated for the optimized fitting parame-
ters. Although our analysis has been restricted to
two-site exchange, it is clear that similar errors
will be introduced into parameters derived by
fitting multi-site exchange data whenever
R0i

2 6¼ R0j
2 .

In summary, we note that because R2 dis-
persion data can be well fit using an incorrect
model (which assumes R0a

2 ¼ R0b
2 ) the optimized

fitting parameters derived from such fits will
typically have larger uncertainties than those
calculated using random errors alone. Each syn-
thetic dispersion data set contains 34 points.
Because experimental profiles typically contain
about a dozen data points the random errors in
experiments will typically be larger than those
listed in Tables 2 and 4. However, in practice
many dispersion curves are simultaneously fit,
which reduces the uncertainties in the optimized
parameter due to random errors to the levels
used in our calculations. Therefore we think that
our calculations closely simulate practical cases.
Although the errors introduced by the R0a

2 ¼ R0b
2

assumption are small, provided that dR0
2sex\\1,

they can be greater than those due to random
errors, when highly accurate optimized parame-
ters are obtained by group-fitting numerous dis-
persion data sets. When fitted parameter
uncertainties are small, the errors introduced by
the R0a

2 ¼ R0b
2 assumption should be estimated

either by using five parameter fitting, or, much
more easily, by using Equations (7)–(10) when-
ever the Carver–Richards equation is valid.

Electronic supplementary material is available
for this article in electronic format at http://dx.
doi.org/10.1007/s10858-006-6226-2.
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